Data mining of the E-pelvis simulator database: a quest for a generalized algorithm for objectively assessing medical skill.
نویسندگان
چکیده
Inherent difficulties in evaluating clinical competence of physicians has lead to the widespread use of subjective skill assessment techniques. Inspired by an analogy between medical procedure and spoken language, proven modeling methods in the field of speech recognition were adapted for use as objective skill assessment techniques. A generalized methodology using Markov Models (MM) was developed. The database under study was collected with the E-Pelvis physical simulator. The simulator incorporates an array of five contact force sensors located in key anatomical landmarks. Two 32-state fully connected MMs are used, one for each skill level. Each state in the model corresponds to one of the possible combinations of the 5 active contact force sensors distributed in the simulator. Statistical distances measured between models representing subjects with different skill levels are sensitive enough to provide an objective measure of medical skill level. The method was tested with 41 expert subjects and 41 novice subjects in addition to the 30 subjects used for training the MM. Of the 82 subjects, 76 were classified correctly (92%). Moreover, unique state transitions as well as force magnitudes for corresponding states (expert/novice) were found to be skill dependent. Given the white box nature of the model, analyzing the MMs provides insight into the examination process performed. This methodology is independent of the modality under study. It was previously used to assess surgical skill in a minimally invasive surgical setup using the Blue DRAGON, and it is currently applied to data collected using the E-Pelvis.
منابع مشابه
A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملData sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملSimulation and Genetic Algorithms for Optimizing Comminution Circuit at Gol-e-Gohar Iron Plant (RESEARCH NOTE)
simulation optimization is a scientific tool that is widely used to design and optimize comminution circuits in mineral processing plants. In this research, first of all, in order to determine the suitable d80 for cicuit hydrocyclone underflow, the requiremed parameters of simulator (residence time distribution, breakage function, selection function and Plitt’s model calibration) were determin...
متن کاملUsing a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data
The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Studies in health technology and informatics
دوره 119 شماره
صفحات -
تاریخ انتشار 2006